skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ouillon, Raphael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 1, 2026
  2. Fluid mechanics lies at the heart of many of the physical processes associated with the nascent deep-sea mining industry. The evolution and fate of sediment plumes that would be produced by seabed mining activities, which are central to the assessment of the environmental impact, are entirely determined by transport processes. These processes, which include advection, turbulent mixing, buoyancy, differential particle settling, and flocculation, operate at a multitude of spatiotemporal scales. A combination of historical and recent efforts that combine theory, numerical modeling, laboratory experiments, and field trials has yielded significant progress, including assessing the role of environmental and operational parameters in setting the extent of sediment plumes, but more fundamental and applied fluid mechanics research is needed before models can accurately predict commercial-scale scenarios. Furthermore, fluid mechanics underpins the design and operation of proposed mining technologies, for which there are currently no established best practices. 
    more » « less
  3. Abstract The oceanic bottom mixed layer (BML) is a well mixed, weakly stratified, turbulent boundary layer. Adjacent to the seabed, the BML is of intrinsic importance for studying ocean mixing, energy dissipation, particle cycling and sediment-water interactions. While deep-seabed mining of polymetallic nodules is anticipated to commence in the Clarion-Clipperton Zone (CCZ) of the northeastern tropical Pacific Ocean, knowledge gaps regarding the form of the BML and its potentially key influence on the dispersal of sediment plumes generated by deep-seabed mining activities are yet to be addressed. Here, we report recent field observations from the German mining licence area in the CCZ that characterise the structure and variability of the BML locally. Quasi-uniform profiles of potential temperature extending from the seafloor reveal the presence of a spatially and temporally variable BML with an average local thickness of approximately 250 m. Deep horizontal currents in the region have a mean speed of 3.5 cm s$$^{-1}$$ - 1 and a maximum speed of 12 cm s$$^{-1}$$ - 1 at 18.63 ms above bottom over an 11 month record. The near-bottom currents initially have a net southeastward flow, followed by westward and southward flows with the development of complex, anticyclonic flow patterns. Theoretical predictions and historical data show broad consistency with mean BML thickness but cannot explain the observed heterogeneity of local BML thickness. We postulate that deep pressure anomalies induced by passing surface mesoscale eddies and abyssal thermal fronts could affect BML thickness, in addition to local topographic effects. A simplified transport model is then used to study the influence of the BML on the interplay between turbulent diffusion and sediment settling in the transport of deep-seabed mining induced sediment plumes. Over a range of realistic parameter values, the effects of BML on plume evolution can vary significantly, highlighting that resolving the BML will be a crucial step for accurate numerical modelling of plume dispersal. 
    more » « less
  4. In situ deep-sea nodule mining monitoring shows that turbidity currents set sediment plume evolution, deposition, and suspension. 
    more » « less
  5. Emerging technologies such as deep-sea mining and geoengineering pose fundamentally new questions regarding the dynamics of gravity currents. Such activities can continuously release dense sediment plumes from moving locations, thereafter propagating as gravity currents. Here, we present the results of idealized numerical simulations of this novel configuration, and investigate the propagation of a gravity current that results from a moving source of buoyancy, as a function of the ratio of source speed to buoyancy velocity. We show that above a certain value of this ratio, the flow enters a supercritical regime in which the source moves more rapidly than the generated current, resulting in a statistically steady state in the reference frame of the moving source. Once in the supercritical regime, the current goes through a second transition beyond which fluid in the head of the current moves approximately in the direction normal to the direction of motion of the source, and the time evolution of the front in the lateral direction is well described by an equivalent constant volume lock-release gravity current. We use our findings to gain insight into the propagation of sediment plumes released by deep-sea mining collector vehicles, and present proof-of-concept tow-tank laboratory experiments of a model deep-sea mining collector discharging dense dyed fluid in its wake. The experiments reveal the formation a wedge-shaped gravity current front which narrows as the ratio of collector-to-buoyancy velocity increases. The time-averaged front position shows good agreement with the results of the numerical model in the supercritical regime. 
    more » « less
  6. null (Ed.)
  7. We investigate the interaction of a downslope gravity current with an internal wave propagating along a two-layer density jump. Direct numerical simulations confirm earlier experimental findings of a reduced gravity current mass flux, as well as the partial removal of the gravity current head from its body by large-amplitude waves (Hogg et al. , Environ. Fluid Mech. , vol. 18 (2), 2018, pp. 383–394). The current is observed to split into an intrusion of diluted fluid that propagates along the interface and a hyperpycnal current that continues to move downslope. The simulations provide detailed quantitative information on the energy budget components and the mixing dynamics of the current–wave interaction, which demonstrates the existence of two distinct parameter regimes. Small-amplitude waves affect the current in a largely transient fashion, so that the post-interaction properties of the current approach those in the absence of a wave. Large-amplitude waves, on the other hand, perform a sufficiently large amount of work on the gravity current fluid so as to modify its properties over the long term. The ‘decapitation’ of the current by large waves, along with the associated formation of an upslope current, enhance both viscous dissipation and irreversible mixing, thereby strongly reducing the available potential energy of the flow. 
    more » « less
  8. Abstract We employ direct numerical simulations in order to analyze the role of double‐diffusive salt fingering in halite precipitation from hypersaline lakes. Guided by field observations from the Dead Sea, which represents the only modern deep stratified lake that precipitates halite under hydrological crisis, we consider a saturated layer of warm, salty brine (epilimnion) overlying a layer of colder, less salty brine (hypolimnion) that is also saturated. The double‐diffusive instability originating in the metalimnion gives rise to an asymmetrical pattern of less salty ascending fingers, accompanied by descending salt fingers that lose heat as they propagate through the metalimnion. The net result is a strong, downward salinity flux that leads to the undersaturation of the epilimnion, while the hypolimnion becomes oversaturated and precipitates halite. These interfacial processes within deep, hypersaline water columns in warm and dry regions suggest a potential route toward the formation of thick halite layers found in the geological record. 
    more » « less